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ÚTIA AV ČR, P.O.Box 18, 182 08 Prague, Czech Republic
Tel: (+420)266052422, Fax: (+420)286890378, Url: http://www.utia.cas.cz,

E-mail: utia@utia.cas.cz



1 Introduction

Patlak-Rutland (PR) plot is a mathematical tool used in analysis of dynamic nuclear medicine
studies [2]. This graph plots a curve which is supposed to contain a linear part. The length
and position of this linear part is unknown. The main advantage of PR plot is visualization of
the curve which allows manual selection of the linear part by an expert.

In this report, we propose an automated method of selection of the linear part using prob-
abilistic modelling and Bayesian statistic. In order to do that we review the model of renal
activity that is observed on the dynamic nuclear medicine studies.

1.1 Mathematical model of renal function

We study function of a kidney using the following curves that are observed on scintigraphic
studies:

Q(t) activity in renal (kidney) region of interest with subtracted background,

P (t) activity in blood,

where t are discrete times of measurement.
The following model is considered to hold approximately:

Q(t) = k
t∑

τ=1

P (τ) + hP (t) + σ(t)e(t). (1)

where k and h are unknown constants, and e(t) is an accumulated error of approximation.
Model (1) is in principle a linear regression model with two notable exceptions:

• the model holds only for t ∈ [tl, th] where tl and th are unknown lower and upper bounds
of the interval. Lower and upper bounds on those unknowns, tl < tl < th < th, are
known from physical model:

tl = min(max
t
P (t), 1min). (2)

th = min(max
t
R(t), 3min).

• e(t) can be considered as zero-mean Gaussian distributed, however temporal evolution
of variance is uknown. We will consider two hypothesis:

constant variance: σ(t) = σ in equation (1).

Patlak-Rutland: variance of e(t) is proportional to P (t)−2, σ(t)
P (t) = σ.

Naming of the second hypothesis is motivated by the RP plot,

Q(t)
P (t)

= k

∫
P (t)dt
P (t)

+ h+
σ(t)
P (t)

e(t), (3)

which arise from (1) by dividing both sides by P (t).
The task is to find all unknown variables: tl, th, k, h.
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Figure 1: Two examples of Patlak-Rutland plots with fitted linear segment.

2 Bayesian Estimation of Linear Regression Parameters

Under the assumption of Gaussian noise, models (1) and (3) can be rewritten in the form

f(yt|ψt, θ, σ) = N (θψt, σ2), (4)

using assignments {yt = Q(t), ψt = [
∑
P (t), P (t)], θ = [k, h]} for model (1) and {yt =

Q(t)/P (t), ψt = [ 1
P (t)

∑
P (t), 1], θ = [k, h]} for model (3).

Using Bayesian framework, posterior density of the model parameters is found using the
Bayes rule:

f(θ, σ|ytl . . . yth , ψtl . . . ψth) =
f(θ, σ)

∏th
t=tl

f(yt|ψt, θ, σ)
f(ytl . . . yth , ψtl . . . ψth)

,

f(ytl . . . yth , ψtl . . . ψth) =
∫
f(θ, σ)

th∏
t=tl

f(yt|ψt, θ, σ)dθdσ.

where f(θ, σ) is the prior density.
Model (4) belongs to the exponential family of models, for which sufficient statistics exist if

the prior is chosen form the conjugate family. Then, posterior density of the model parameters
is found in the form

f(θ, σ|ytl . . . yth , ψtl . . . ψth) =
f(θ, σ)

∏th
t=tl

f(yt|ψt, θ, σ)
f(ytl . . . yth , ψtl . . . ψth)

,

= GiW (V, ν). (5)

where

V = V0 +
th∑
t=tl

[
yt
ψt

]
[yt ψ′t] , (6)

ν = ν0 + (th − tl + 1).
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Statistics V0, ν0 are statistics of the prior denstity which is of the same form as posterior (5).
Decomposing V into four parts

V =
[
Vy Vyψ
Vψy Vψ

]
, (7)

the following important results can be derived [3]:

θ̂ = VψyV
−1
ψ (8)

f(ytl . . . yth , ψtl . . . ψth) =
I(V, ν)
I(V0, ν0)

(9)

I(V, ν) = (2ν+2π2−th+tl)
1
2 Γ(

ν

2
)|Vψ|−

1
2 |Vy − VyψV −1

ψ Vψy|−
ν
2 . (10)

Here, α0 is normalization integral of the prior.

3 Fitting Linear Interval

Since identification of the linear regression parameters for known tl and th is trivial, we adress
identification of the time bounds first. We seek probability f(tl, th|Mi, Q, P ) whereMi denotes
conditioning on knowledge of the model of the data (1) or (3) for i = 1, 2, respectively. Using
the chain rule of probability

f(tl, th|Mi, Q, P ) =
∫
f(tl, th, k, h, σ|Mi, Q, P )dk dh dσ

∝
∫
f(Q(tl . . . th), k, h, σ|Mi, P )dk dh dσ × f(Qout) =

= f(Q(tl . . . th)|Mi, P )f(Q(tout)|P ). (11)

Here, tout = [tl . . . tl − 1, th + 1 . . . th] denotes data outside interval [tl, th]. In order to proceed,
we need to complement model Mi by models of the data outside of the linear region. In this
paper we consider uniform distribution of the data

f(Qout) =
∏
t∈tout

U(qmin, qmax) =
(
qmin − qmax

Kq

)|tout|
, (12)

where qmin and qmax are apriori known lower and upper bounds of the admissible range, Kq

denotes proportion of the range in which the points can reside, see Fig 2 for illustration.
Typical number of records in the considered region is around 20. Thus extensive testing

of all possible combinations of tl and th involves around 200 evaluations of (11) which is
computationally cheap.

Using (9) in (11) and removing all elements independent of tl, th, V and ν, the posterior is

f(ti, tj |Mi, Q, P ) ∝(2ν+2π2−th+tl)
1
2 Γ(

ν

2
)|Vψ|−

1
2 |Vy − VyψV −1

ψ Vψy|−
ν
2(

qmin − qmax

Kq

)−|tout|
.
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Figure 2: Illustration of model of the points outside the linear interval. Grey area covers the
uniform model where external points can be anywhere between qmin and qmax, i.e.
model (12) for Kq = 1. Dark grey area covers the uniform model where external
points can be only in one half of the interval qmin and qmax, in this case chosen in
lower part of the first and upper part of the second external region.

3.1 Model combination

It remains to address, which of the two models—(1) and (3)—is more appropriate. A simple
solution arise when we assume both models to be equaly probable. Then,

f(ti, tj |Q,P ) ∝ 0.5f(ti, tj |M1, Q, P ) + 0.5f(ti, tj |M2, Q, P ), (13)

which can be easily computed.

3.2 Experimental results

The methods were tested on 20 data sets of real data for Kq = 1. The best estimates of
unknown tl and th are displayed in the left part of Table 1, and the corresponding estimates
of the θ̂ are displayed in the right part of the table.

We note the following:

• The considered models yield identical estimates of the bounds tl, th for 14 of 20 data files.
For the remaining 6 data files, the proposed combination (13) favored 3 times bounds
obtained for (1), while those for (2) were preferred only 2 times. An interesting case
is the file mag3 4i1c.crv for which the combination picked different bounds from both
competing models. The results are shown in detail in Figure 3.

• Estimates of the regression coefficients θ obtained for models (1) and (2) differ only neg-
ligibly when the bounds are estimated equally. Otherwise, they may differ substantially.

• For 6 data files, estimated bounds of the linear interval are at the fixed bounds for both
considered models.
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file name t̄l t̄h eq. (1) eq. (2) eq. (13) θ̂ for (1) θ̂ for (2)
dtpa 1i1c.crv 2 16 2 0 2 0 2 0 0.56 -0.19 0.57 -0.20
dtpa 2i1c.crv 2 18 3 0 2 0 3 0 0.27 -0.80 0.25 -0.74

dtpa 3i1c.crv 2 18 3 0 3 0 3 0 0.34 -0.36 0.34 -0.35
dtpa 4i1c.crv 2 18 4 0 4 0 4 0 0.09 -0.04 0.09 -0.05
dtpa 5i1c.crv 2 15 2 0 2 0 2 0 0.46 -0.18 0.47 -0.19
mag3 1i9c.crv 3 18 1 0 1 0 1 0 0.87 -0.94 0.88 -0.96
mag3 2i1c.crv 2 18 0 0 0 0 0 0 2.18 -0.43 2.19 -0.45
mag3 3i1c.crv 2 14 2 0 0 0 0 0 1.06 -0.18 1.05 -0.15
mag3 4i1c.crv 2 15 2 0 1 -2 4 -2 0.64 -1.68 0.81 -1.94
r0001.crv 2 15 0 0 0 0 0 0 1.07 0.09 1.06 0.11
r0002.crv 3 18 0 0 0 0 0 0 0.44 -1.20 0.46 -1.25
r0003.crv 3 18 0 0 0 0 0 0 1.30 -0.29 1.32 -0.33
r0004.crv 2 11 2 0 2 0 2 0 1.24 -0.47 1.25 -0.49
r0005.crv 2 17 0 0 0 -1 0 -1 0.49 -0.26 0.50 -0.27
r0006.crv 2 18 5 0 1 0 5 0 0.91 -1.23 0.82 -0.97
r0007.crv 2 18 3 0 3 0 3 0 0.33 -0.95 0.33 -0.95
r0008.crv 4 16 0 0 0 0 0 0 0.77 -0.45 0.80 -0.51
r0009.crv 2 18 0 0 0 0 0 0 1.11 -0.24 1.12 -0.25
r0010.crv 2 18 2 0 0 0 2 0 0.61 -0.69 0.56 -0.54
r0011.crv 2 18 1 0 1 0 1 0 0.84 -0.58 0.84 -0.58

Table 1: Table of indexes of the best linear fits for all data files. Fixed upper and lower bounds,
tl and th, are displayed in the first column. Differences of these bounds and the best
fits of linear model for eq. (1) are in the second, while those for eq. (3) (Patlak-
Rutland plot) are in the third. The proposed combination of those two approaches,
eq. (13), is displayed in the third column. Estimates of the regression parameters
corresponding to the used model are displayed in the last column.

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5
eq. (1)

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5
eq. (2)

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5
combination

Figure 3: Estimates of the best linear fit using three different approaches for data file
mag3 4i1c.crv.
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• The method is very sensitive to the choise of Kq. For example, for a realistic choise
Kq = 3, in 6 cases out of 20, the best linear part estimated by the method is only 3
points long.

4 Outlier suppression

Note that PR plots may contain outliers, Fig. 1 right. A way to suppress these outliers is to
relax the assumption of a compact interval of linear fit. Specifically, we define two sets of time
indexes tin and tout = {t : t 6∈ tin} such that

f(Q,P |Mi) = f(Q(tin)|Mi, P )f(Q(tout)|P ). (14)

Here, we again consider model (12) for observation in tout. Extensive evaluation of all possi-
ble combinations of membership of time indexes in these sets is computationally prohibitive.
Hence, we adopt an approximate evaluation procedure of the EM-like type. Consider a label
process

l(t) =

{
1 t ∈ tin,
0 t ∈ tout.

Model (14) can be rewritten as follows:

f(Q,P |Mi, l(t), θ, σ) =
∏
∀t
f(Q(t)|Mi, P, θ, σ)l(t)f(Q(t)|P )1−l(t).

If l(t) were known, posterior density of θ, σ is again in the form (5) with statistics

V = V0 +
th∑
t=tl

l(t)
[
yt
ψt

]
[yt ψ′t] ,

ν = ν0 +
th∑
t=tl

l(t). (15)

Marginal density is then given by (9).
Using the idea of the EM algoritm [4], we can iteratively replace l(t) by maximum likelihood

estimate
l̂(i) = arg max

l
Eθ,σ|Q,P,l(i−1) ln f(θ, σ|Q,P,Mi, li), (16)

using posterior density from the previous iteration.
Since evaluation of (16) is non-trivial we approximate it as follows. We replace l(t) by its

expected value using estimate of l̂(i−1)
qb for the remaining values of t, i.e.:

l̂
(i)
qb (t) = E(t ∈ tin|l(τ) = l̂

(i−1)
qb (τ), ∀τ 6= t, Q, P )

=
I(Vt∈tin , νt∈tin)

I(Vt∈tin , νt∈tin) + I(Vt6∈tin , νt6∈tin)
.

where Vt∈tin denote V computed with l(t) = 1 and Vt6∈tin with l(t) = 0 respectively. This
approach is closely related to the Quasi-Bayes approach of used in estimation of paremetes of
probabilistic mixtures [1].

Note that:
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file name θ̂ for (1) θ̂ for (2) relative difference
dtpa 1i1c.crv 0.560 -0.178 0.564 -0.189 0.8% 5.8%
dtpa 2i1c.crv 0.271 -0.830 0.264 -0.809 2.6% 2.5%
dtpa 3i1c.crv 0.295 -0.208 0.294 -0.208 0.4% 0.4%
dtpa 4i1c.crv 0.064 0.008 0.067 0.002 4.1% 116.1%
dtpa 5i1c.crv 0.484 -0.211 0.488 -0.217 0.9% 2.8%
mag3 1i9c.crv 0.874 -0.929 0.887 -0.963 1.6% 3.6%
mag3 2i1c.crv 2.198 -0.456 2.204 -0.466 0.3% 2.3%
mag3 3i1c.crv 1.021 -0.103 1.013 -0.086 0.8% 17.8%
mag3 4i1c.crv 0.810 -1.962 0.775 -1.885 4.4% 4.0%
r0001.crv 1.064 0.120 1.067 0.115 0.3% 3.9%
r0002.crv 0.501 -1.313 0.508 -1.320 1.4% 0.5%
r0003.crv 1.289 -0.291 1.294 -0.303 0.4% 3.7%
r0004.crv 1.270 -0.502 1.291 -0.539 1.6% 7.0%
r0005.crv 0.503 -0.278 0.499 -0.269 0.9% 3.3%
r0006.crv 0.925 -1.276 0.917 -1.256 0.8% 1.6%
r0007.crv 0.334 -0.967 0.330 -0.959 1.1% 0.9%
r0008.crv 0.821 -0.517 0.824 -0.527 0.5% 2.0%
r0009.crv 1.118 -0.254 1.118 -0.257 0.0% 1.0%
r0010.crv 0.571 -0.587 0.569 -0.580 0.4% 1.2%
r0011.crv 0.854 -0.599 0.862 -0.623 0.9% 3.9%

Table 2: Estimates of the linear regression coefficients for models (1) and (2) using assumption
(14).

• For this model, we do not have to set hard limits on the external points. They will be
automatically suppressed if they do not fit the linear interval inside. However, this also
means that even valid points may be rejected if the algorithm is initialized poorly – e.g.
when the first and the last points are initialized with 1 and the rest with 0.

• Information that the points close to the limits (2) are most likely outliers is transformed
into prior density on lt as follows:

f0(l(t)) = 0.99
(

sin(
t

T
π) + 0.1

)
.

Thus, the first and the last point within the interval (2) have prior probability of belonging
to the linear part approx. 0.1. While the point in the middle of the interval has prior
probability of being in the linear part around 0.99.

4.1 Experimental results

The same 20 data files were tested using this model. Visualization of the results in the form
of PR plot is displayed in Figure 4.

The most notable result is that for this approach the estimated parameters for model (1)
and (2) differ only negligibly which is demonstrated by olmost perfect overlap of green and red
lines in Figure 4 and numerical results in Table . Relative difference of these two estimates is
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Figure 4: Linear fits of a linear model with outliers for 20 data sets. The best fit using model
(1) is displayed in red, the best fit using model (2) is in green (however they mostly
overlap). The thick blue bar st the bottom of each plot is proportional to the weight
of the corresponding data point on the x-axis. Dips in this bar signify suppressed
data, i.e. the outliers.
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mag3_1i9c.crv mag3_1i9c.crv

Figure 5: Linear fits for different values of Kq: Kq = 1 (left) and Kq = 3 (right).

typically lower than 7%. The only two exceptions from this rule are associated with numbers
clos to zero, hence even if the relative error is high, the absolute error is minor.

This method is much less sensitive to the choise of Kq. Higher values of Kq results in more
aggresive outlier suppression, Fig. 5. However, the resulting linear fits are almost identical. For
example, coefficients of linear fits for the two plots in Fig 5 are: 0.877,−0.943 and 0.874,−0.937
respectively.

Matlab code for these experiments can be downloaded from: http://staff.utia.cas.cz/smidl.

5 Conclusion

Estimation of linear coefficients for functional analysis of renal activity form scintigraphic
images is complicated by two facts: (i) it is not known which of the two competing models is
more appropriate in given context, and (ii) the assumption of linearity is valid only within time-
interval with unknown bounds. We have proposed two solutions based on Bayesian estimation
theory. The first approach evaluates likelihood of all admissible bounds of the time-interval,
the second approach seeks the best linear fit on the whole admissible data robust to outliers.

Both of the proposed methods eliminate complications mentioned above. Experimental
comparison of the approaches on real data verified that the resulting estimates are robust to
the choice of the competing models, yielding similar estimates for both of them. For this
limited study, the approach based on outlier suppression appears to be more robust to the
choise of the model and prior parameter Kq. Thus, it may be a good candidate for automatic
or semi-automatic analysis of this problem. For example, one estimate for each model can be
computed and when the procedure would be completed automatically if they are close to each
other. When they differ significantly the case would be brought to the attention of an expert.
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